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Advances in vertebrate pest control: implications for
the control of feral house mice on Marion Island

T.P. Jackson®' and R.J. van Aarde*

We review the options and technologies available to eradicate
exotic mammals, especially rodents, from various habitats but in
particular from islands. We also recommend possible measures
against the house mouse population of Marion Island.

The house mouse as a pest species on Marion Island

Feral populations of house mice, Mus domesticus (Fig. 1), occur
on many oceanicislands,' including the sub-Antarctic Marion Is-
land (46°54'S, 37°45'E) situated 2300 km SSE of Cape Town, South
Africa. This population has been living on the island for some 180
vears'? and still thrives, despite attempts at population control
by introducing cats, Felis catus.™

The house mouse is an opportunistic breeder with a high
potential rate of population increase.” Breeding on Marion is
seasonal, females giving birth to an average of 6.9 pups and
producing 7.3 litters during the breeding period.” These mice
apparently undergo density-dependent population changes,
probably related to refuge and/or food availability.” The
repercussions of changes in climate on mouse numbers, possibly
through the relaxation of factors limiting survival and/or
reproductive output, served as motivation for a recently
completed study on the population. However, ten years of data
from 1991 to 2001 indicated no significant annual increase in
population. Population numbers do change seasonally, though,
in response to seasonal breeding, peaking at the end of summer
at densities as high as 300 mice per hectare, most (93-97%) of
which die during the winter.

Dietary studies suggest that mice on Marion may influence the
plant community structure through seed harvesting.”*
However, their principal direct impact may be on the inverte-
brate community through selective predation.”" On Marion,
mice may take 0.7-1% of the daily standing crop of macro-inver-
tebrates.'"'* Perhaps more important is their indirect effect
through the removal of decomposer biomass and subsequent
impairment of nutrient mineralization."" Their presence and
consequences for the island’s biota are undesirable, mainly
because of Marion’s conservation status. Thus, efforts to either
control or eradicate mice from the island make conservation sense.

A 1995 workshop" concluded that eradication of mice from
Marion Island would be beneficial in restoring ecosystem
function. However, before instigating a control programme,
possible control options and their feasibility need to be assessed.
At the time of the workshop, poison baiting appeared to be the
most likely management tool.” During the 1990s, a number of
alternative control options underwent refinement."" Here we
review these options and examine technologies which should
become available within the next decade. We also make recom-
mendations for possible population control of house mice on
Marion Island.
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Integrated pest management

Many decades of effort have failed to eradicate exotic
mammals from all but the smallest islands.”” Today emphasis is
being placed on multiple strategies of population control that
are more likely to produce the desired effect.”* For instance, the
aim of a fertility control strategy may not be to eradicate a pest
species per se, but to maintain its numbers at a low density by
reducing the birth rate,”* such that the added effects of other
control measures may eventually eradicate the population.

Integrated control programmes have been proposed to control
British badger (Meles meles) populations and the Kaimanawa
horses (Eqius species) of New Zealand, based on a joint culling
and immunocontraception operation. The successful eradication
of the European rabbit (Oryctolagus cuniculus) from Cabbage
Tree Island, Australia, involved the serial introduction of
themyxoma virus, rabbit haemorrhagic disease and finally a
poison-baiting programme.” Similarly, an integrated pro-
gramme successfully eliminated the feral cat population on
Marion Island. Initially, feline panleukopenia was introduced in
1977 and when the virus failed to continue spreading effectively
through the population after five years, was augmented with
alternative control strategies including hunting, trapping and
poisoning.”** A common denominator of successful program-
mes has been a detailed understanding of the habitat use, behav-
iour, reproductive parameters and population dynamics of the
target species.” ™

Rodenticides as agents of control

A workshop" on the impact and contril of house mice on
Marion considered the large-scale application of a rodenticide
for their eradication. Successful rodenticide-based control
strategies depend on a clear biological understanding on which
to build, including a knowledge of bait toxicity, palatability and
delivery mechanisms., Variations in these factors, such as
changing bait type,” can make the difference between ineffec-
tive and more efficient methods of targeting rodent pests while
avoiding non-pest species.

Fig. 1. The house mouse (Mus domesticus) has been accidentally introduced to
many oceanic islands and is of significant agricultural importance as it often occurs
in pest proportions.
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Brodifacoum is the most potent of the second-generation
anticoagulants that have been developed™ and has been touted
as a possible rodenticide for use on Marion."” This follows its use
in successful rodent eradication campaigns on a number of
smaller islands.” Prior to its deployment, the highly toxic nature
of brodifacoum needs to be considered, using an environmental
risk assessment.” The chemical is relatively insoluble and, after a
single aerial drop, is less likely than other poisons (such as
sodium monofluoroacetate 1080) to accumulate in either aquatic
systems or plant material. ™" Tests in New Zealand suggest that
only small numbers of invertebrates are likely to feed on the
bait.*

In several previous campaigns, the pui\unim:, of non-target
species was not properly addressed.” For instance, during
baiting operations on Enderby Island (New Zealand), at least
two-thirds of the skua population was killed by direct intake of
poison bait, while on Montuihe Island, brodifacoum poisoning
was responsible for deaths among 10 species of birds, including
60% mortality of the paradise shellduck (Tadorna variegata).”
Ironically, attempts to conserve rare or endangered species on
their island habitats, such as the Seychelles magpie-robin
(Copsychus sechellarim),” little spotted kiwi (Apleryx owenii)*™ and
North Island saddleback (Philesternus carunculatus),” have been
compromised through poisoning of these threatened birds,

While primary poisoning occurs through the direct ingestion
of bait,* secondar y poisoning may arise from the scavenging of
mouse carcasses. ™" At Marion, lesser sheathbills (Chionis
minor), Subantarctic skuas (Catharacta antartica), and Kelp gulls
(Larus dominicanus), are all likely to take poison bait as well as
scavenging poisoned mice; in an Australian field study, 25%
of poisoned mice died above ground, making the carcasses
available for scavengers.” Factors such as bait colour,” delivery
method, the use of flavourants and timing of an operation should
be optimized to allow maximum impact on mouse populations,
while minimizing casualties amongst non-targel species.

Despite these disadvantages, brodifacoum appears to be one
of the better poisonsavailable for rodent control, with a recorded
mortality rate of 99% in house mice." Besides its high toxicity,
mice do not build up resistance to the poison, a problem associ-
ated with first-generation anticoagulants such as warfarin.”
Ironically, the use of warfarin to control black rats (Rattus rattus),
on Lord Howe Island (Australia) resulted in its use as an
important food source by mice that had grown resistant to its
action.*

Marion is larger (290 km?) than any other island from which
rodents have successfully been eradicated, making it potentially
difficult to deliver bait efficiently or cost-effectively. The expense
of bait release by helicopter, the most probable delivery method,
is likely to be high. For instance, an evaluation of the costs and
benefits of controlling house mice on Thevenard Island, Western
Australia, provides some sobering statistics.” The expenses
incurred in conducting a poisoning operation totalled over
AS1000 (R5500) ha', largely due to the cost of travel and
accommodation. The expense of brodifacoum and bait stations
alone over the 22-day trial period was A% 55 (R300) ha™'.* Given
that mice on Marion are excluded from altitudes of greater than
800 m (van Aarde, pers. obs.), an area of at least 200 km® poten-
tially supports mouse populations. Based on Moro’s estimates, ™
the cost of a single bait programme over such an area, for poison
and bait stations alone, would run to over R6 million.

More recently, a programme was devised to eradicate Norway
rats (Rattus norvegicus), from Campbell Island, New Zealand.”
Given the island’s relatively large area (117 km’) and similar
latitude to Marion, this programme has the greatest relevance to
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the situation on Marion. In 2001, a single brodifacoum-based bait
drop was performed, at 6 kg ha', with a 50% drop overlap (to
eliminate gaps), the success of which is still to be assessed. The
Campbell Island protocol included 70 hours flying time, using
three helicopters, over a three-month period. ¥ If the area of
Marion that would need to be baited is approximately 1.5 times
that of Campbell Island, the cost of bait alone for a single drop
(approximately R140/kg™) would amount to over R14 million. In
addition, a maximum of just two helicopters would be available,
corresponding toa flying time of 105 hours over 6 or 7 months.

Effective baiting

Simple baiting operations may be undermined when the
reduction in population density achieved over a short period
fails to influence long-term population dynamics. High mortal-
ity ina population of rodents is compensated for in many species
by changes within their social structure, or natural regulation of
numbers through changing density dependence in survival and
reproductive output.* Strategic follow-up baiting campaigns are
often necessary to maintain low population densities.”

Thus, total eradication of a rodent population would have to
be achieved both to prevent recolonization and obviate costly
subsequent baiting campaigns. To date, poisoning operations
have successfully eradicated rodents from at least 41 islands
around New Zealand.” Most of these campaigns, however, have
been directed at the eradication of rats.” 7 * The largest of the
islands so targeted is Langara Island (Canada), that covers an
area of only 31 km’,” roughly one tenth that of Marion. On an
island the size of Marion, the probability of eradicating a mouse
population through poisoning would be less than on a smaller
island, making poison-baiting operations an expensive and
potentially ineffective means of control. The Department of
Conservation in New Zealand acknowledges that house mice
are the most difficult small mammals to eradicate from islands.”
Evenso, mice have been eliminated from a number ofislands,
the largest of which is the 7-km® Enderby Island.”

The use of rodenticides such as brodifacoum,™ or sodium
monofluoroacetate 1080 to control mouse populations may
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casily be compromised, as the survival of even a few mice will
lead to their rapid re-establishment. Thus, if the recorded
mortality rate for mice when using brodifacoum is 99%," the
survival rate is 1%. Indications that poison-baiting may f ml asa
technique to eradicate house mice come from choice tests
conducted on food containing brodifacoum and non-poison
control diets. In these trials only 90% of mice actually consumed
poison over a 14-day period,” suggesting bait uptake may be a
key issue. Veitch™ recorded the presence of a mouse on Browns
Island 18 days after a poison drop; this eradication programme
could be considered successful only following the death of this
individual. If a single mouse can survive on an island the size of
Browns (0.6 km?), the possibility of multiple survivors could be
predicted for Marion.

Biological control

Biological control may be achieved using agents which induce
lethal infection of target species, or agents which reduce breed-
ing performance in the target species, either through natural
infection or impaired fertility. Pest species usually maximize
reproductive rate by producing many large litters, show early
onsel of sexual maturity and have a low life expectancy. As such,
they are more sensitive to reductions in fecundity than increases
in mortality,” " Further, dispersal and social structure can
counteract simple forms of pest control through mortality.” We
consider these in turn.
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Lethal infection

The most effective lethal control of a feral mammal followed
the 1950 introduction of the myxoma virus against the feral
rabbit population in Australia. The initial mortality rate was
99.9%, but fell to 95% by 1954." Myxoma control was followed by
the introduction of rabbit calicivirus, the agent of rabbit haemor-
rhagic disease (RHD), into wild Australian rabbit populations in
1995. Like the myxoma virus, rabbit calicivirus has been respon-
sible for a significant decline in the rabbit population.™ As with
myxamotosis, rabbit populations appear to build up resistance
to RHD and it can be predicted that populations will shortly
begin to recover from the epidemic. Thus, these epidemics have
not managed to eradicate this pest species.

The most suitable pathogen to control mice may be the
ectromelia virus, which causes mousepox.”™* This virus can kill
up to 80% of infected mice,” though wild Australian mouse
populations exhibit innate resistance to ectromelia.” Similarly,
many wild populations of Mus species show genetically deter-
mined resistance to flaviviruses,” which potentially makes them
unsuitable as a viral control agent. As the Marion Island mice
have been isolated from other populations for almost 200 years,'
however, it would be worth investigating their resistance to both
ectromelia virus and flaviviruses. The recent screening of the
Marion mouse population produced positive titre results for
mouse adenovirus-2 (72% infection), parvovirus (56% infection),
reovirus (51% infection) and cytomegalovirus (100% infection;
G.R. Singleton, in litt.), though their epidemiology or pathoge-
nicity have not been investigated.

There are three potential problems with the use of lethal
infection agents, First, the use of a lethal agent may select for a
genetically resistant pest population. Second, a fecund pest
animal can rapidly repopulate a depleted population, Third, the
effectiveness of the virus may be reduced by the emergence
of isolates with reduced virulence in the field.” Thus, while
infection agents may have an initial impact on the pest species,
alternative methods of maintaining or reducing pest numbers
may become necessary after a relatively short time.

Natural infection

Some naturally occurring biological agents, whilst rare, are
capable of impairing breeding performance as a result of
infection.” For instance, the nematodes Capillaria hepatica™ and
Heligmosomoides polygyrus™™ reduce breeding in laboratory
mice.™ Capillaria hepatica has been considered an agent to control
for Australian mouse plagues,”™ though both enclosure-based"
and field trials suggest it has a minimal effect on breeding and
population growth.™"

Fertility control

Over the last 16 years, fertility control has gained in popularity
as a population management tool.” While hormonal chemo-
sterilants have been tested” and used successfully to limit
animal populations,” immunosterilants are being investigated
as the latest advance in fertility control."™™* Immunocontra-
ception in particular has been touted as a promising long-term,
cost-effective biological control strategy.™™ Importantly, as animal
ethics are being given even greater consideration, reducing
recruitment into the population via fertility control is seen as a
more humane alternative to population control than extermi-
nating excess individuals via increased mortality.” ** Several pest
species, including the brushtail possum (Trichsurus vulpecula), ™"
rabbit and European red fox (Vulpes vulpes),” have been targeted
for immunocontraception programmes.
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Immunocontraception as a management tool

Potential target sites of immunocontraceptives

Whereas the central endocrine control system and sperm/testes
have been considered as target sites for immunocontra-
ceptives,”" the ovary has received the most attention, specifi-
cally the zona pellucida (ZP), the extracellular glycoprotein
matrix surrounding mammalian oocytes, ovulated eggs and
developing embryos. Antibodies coating the mature oocytes can
prevent fertilization by inhibiting sperm-binding to ovulated
eggs or penetration of sperm through the ZP. The region is
relatively conservative in mammals and antigens from one
species will normally produce antibodies in another.™ Thus,
porcine ZP has been used to induce infertility in a wide range of
wild species."™" In mice the ZP3 glycoprotein has been inten-
sively studied as a target antigen for immunocontraception.
Indeed, monoclonal antibodies directed against ZP’3 have been
used to inhibit fertilization by passive immunization.'*"”
Synthetic peptides encoding a ZP3 epitope have resulted in a
variable period of immuno-fertility of from zero to eight
months,"*"
ectromelia virus, expressing the ZP3 glycoprotein, caused
infertility for 5-9 months. Similarly, rabbits infected with a
recombinant myxoma virus, expressing the ZP B glycoprotein,
showed 25% infertility that was increased to 80% following
booster inoculations.""

whereas mice infected with a recombinant

Delivery methods

Oral delivery. Oral delivery may affect both target and
non-target species, as both may feed on the same bait. Itisimper-
ative that orally delivered immunocontraceptive baits are either
species-specific or that they do not cause infertility in non-target
species. Both recombinant viral'! and bacterial* vectors have
been developed for oral delivery, though they have been used in
immunization and not sterilization campaigns.

Virus-vectored delivery. The use of recombinant-microorganism
vectors to deliver reproductive antigens has been proposed in
cases where species need to be targeted efficiently over rela-
tively large and inaccessible areas® """ These vectors may be
spread through the target population by sexual transmission,
contagion, orally or viaan arthropod carrier™ A viral vector must
be capable of carrying DNA encoding a reproductive immuno-
gen™ as well as promoters to express the foreign gene and
cytokines to enhance its effectiveness.*'”

In Australia, the mouse-specific murine cytomegalovirus
(MCMV) is considered a suitable vector for immunocontra-
ception.” Within wild Australian house mouse populations,
80-90% of individuals have tested seropositive to MCMV. It is a
large DNA virus that establishes persistent non-lethal infection
which could be used in a recombinant form to induce an
immunocontraceptive response. Further, it is acquired through
close contact between individuals and transmitted via bodily
secretions (for example, saliva, sexual contact).”” MCMV is also
species specific,' ane of the mostimportant eriteria fora suitable
viral vector. Based on the Australian initiative, MCMV could
prove an effective vector for immunocontraceptive control of
the Marion Island mouse population. Serological tests have
shown MCMV to be widespread amongst theisland’s mice (G.R.
Singleton, in litt.).

To date, neither orally nor virally delivered immunocontra-
ceptives have been tested under field conditions,"” though
Spanish workers were recently able to produce a recombinant
virus to immunize rabbits against both RHD and myxa-
motosis."® Not only did this recombinant virus protect rabbits
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against myxamotosis and RHD, but it was readily transmitted to
uninoculated rabbits.'"”

Will fertility control lead to a long-term reduction in population
numbers?

The role of fertility control in reducing the population of a
widespread vertebrate pest has not been demonstrated in the
field and we can predict the outcome of such treatment only
through computer-based population models™ and large-scale
field experiments using surgically sterilized adults. These
models support the idea that, over the short term, mammal pests
could be kept at low density by fertility control.*"'* However,
the long-term effects have not been monitored and opinions
differ about its effectiveness. Field trials using surgically steril-
ized individuals suggest that a female sterility rate of 65%
would be needed to control mouse populations growth effec-
tively."™

As with poisoning, itis probable that suppressing fertility may
lead to compensatory breeding within the population.” For in-
stance, a reduction in birth rate following immunocontraception
may be compensated for by changes in juvenile and adult
mortality.""** If juvenile mortality is reduced to the same extent
as birth rate, there will be no corresponding reduction in recruit-
ment to the population." Such compensation has been demon-
strated in rabbits."”” Compensation can also occur by increased
numbers of offspring by females unaffected by fertility control
measures. In trials using populations of surgically sterilized
mice, Chambers ef al."” recorded an increase in the litter size and
the number of females bearing litters amongst non-sterilized
individuals.

Can a species-specific, long-acting immunocontraceptive be
developed?

Fertility studies show that species immunized with a recombi-
nant-derived antigen may only induce an immune response
only for a period of months™'*
required to maintain antibody levels, or even enhance them.
Thus, depending on the longevity of the initial immune
response, periodic re-infection of the population may be neces-
sary through either a virally vectored or oral route in order to
maintain infertility. Recent research on dogs, however, suggests
that vaccination with purified ZP glycoproteins can lead initially
to immunocontraception and then, irreversibly, to immuno-
sterilization.™

The use of a vector already present at Marion Island, such as
MCMV, needs to take account of competition between the genet-
ically modified vector and its field strain. Using a modelling
approach, Barlow"' suggested that the persistence of a vector
strain within the host is enhanced by the local absence of a wild
strain of the same carrier agent. It may therefore be necessary to
consider introducing mouse-specific vectors that are present in
other Mus populations, but absent from Marion Island.

Shellam™ suggests that pre-existing immunity to a viral vector
may not be a significant barrier to transmission, as there is good
evidence of the circulation of several virus variants in immune
populations as well as the isolation of multiple variants from a
single individual. In a field experiment, Robinson ef al."™"
released a readily identifiable strain of virus into several rabbit
populations to test the idea that it could compete with wild
strains and demonstrated that the new strain was able to spread
through the population.

Another potential problem with a viral vector may be low
transmission rates at low population densities.Use of a sexually
transmitted virus, however, such as a herpes-type virus, would

Booster immunization is
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eliminate such density-dependent effects, as sexual activity and
viral transmission are directly related.”

Immunocontraception: the ethical debate

Immunocontraception appears to have been accepted by some
as a management tool of both free-ranging and zoo animals,
using remote delivery via darts.""'* Oral delivery via a bait has
also met with international acceptance, as in the immunization
of foxes against rabies in Europe. At present oral bait delivery is
the only available method when dealing with rodents and has
been used successfully in the past to deliver immunosterilants.”
It has also been considered for immunocontraceptive control
populations of introduced grey squirrel (Sciurus carolinensis).'™

The main ethical debate over immunocontraceptives is the use
of recombinant pathogens as a vector. The potential risks of a
virally vectored immunocontraceptive are widely acknowl-
edged ™= M by researchers, governments and the general
public. While some parties advocate ending further trials imme-
diately, others believe they should proceed with extreme
caution.”” Even if the release of genetically modified vectors
into the environment is finally approved, it will be a long time
before the consequences of such actions can be assessed.

At present a widespread fertility control programme via
immunocontraception remains a novel concept with an uncer-
tain outcome and considerable risk.” Furthermore, the World
Health Organisation (WHO) recommends that vectors under
consideration for the delivery of contraceptive antigens must be
non-transmissible, given the potential for international exportation
of affected animals. Together, the WHO and the Office Interna-
tional des Epizooties (the veterinary equivalent of WHO) con-
sider that if contraception is to be used in wild species its actions
must be reversible and species specific.” " There is no system
presently available that satisfies concerns over the risks linked to
the release of a transmissible contraceptive virus in wildlife pop-
ulations.”™ Once introduced into a population, a viral-vectored
agent cannot be recalled.”™" This was poignantly demonstrated
recently by the rapid spread of the RHD virus from Wardang Is-
land to mainland Australia.

Towards the effective control of feral mice on
Marion Island

It is clear that, while immunocontraception may provide an
alternative approach to wildlife management, our understand-
ing of its application is in its infancy. However, this technology is
evolving rapidly. To produce a suitable immunocontraceptive
may take many years and cost millions of rands,” though as the
relevant technology becomes more refined, we can anticipate
that the associated costs will decline. Compared to the potential
costs of repeated puisun-baiting campaigns, techniques such as
viral-vectored immunocontraception may provide a long-term,
relatively cost-effective solution to pest-related problems. In
addition there is already a substantial research programme
under way in Australia to examine ways of controlling Mus
nusculus populations. While the aim of this may be to prevent
rodent plagues, it is obviously relevant to the Marion Island
rodent management programme.

A viral-vectored mechanism may be the only appropriate
method of fertility control for house mouse populations.'™
Population models developed for other species suggest that an
integrated pest management strategy, based on fertility control
in conjunction with a secondary control agent such as poisoning,
may be the best way of either eradicating or controlling such
populations, including the mice on Marion. From an ecological
perspective, the eradication of mice from the island is highly
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desirable. We suggest that the following steps be taken to under-

stand the potential efficacy of population control measures:

1. Develop a series of field trials to assess the consequences of
lethal control, through poisoning, for mouse populations.
This should examine the effects on both target and non-tar-
get species.

2. Determine the feasibility of using lethal control to eradicate
mice from an island as large as Marion, possibly testing this
via a full-scale eradication programme on a smaller South
African island first.

3. Develop a field trial on Marion Island, using surgically or
chemically sterilized mice to examine the effect(s) of varying
intensities of fertility control on population density, repro-
ductive output, reproductive compensation and survival.

4. Use reproductive and life-history variables monitored in the
above trials to model the effects of fertility control, lethal
control, or a combination of both treatments in order to
examine the best method of eradicating or controlling the
mouse population on Marion.

We hope that, by the time these questions have been properly
answered, scientific advances in the field of immunocontra-
ception will make this a humane and effective way of contribut-
ing to the control of Marion’s mouse problem.

We acknowledge the Department of Envirenmental Affairs and Tourism and
CERU for logistical and financial support supplied in writing this review. Valuable
comments on an earlier draft of the manuscript were provided by T. Wassenaar.
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facsimile reproductions of original papers in Nature.
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Knopf/Heinemann. $39.95/£18.99. The author of The Double Helix
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portrait of the frozen continent written in the mid-1980s, now reissued.
Enough: Staying Human in an Engineered Age. By Bill McKibben.
Times Books/Henry Holt. $25. Arguments against the advance of
technologies the author finds a threat to life as we know it — genetic
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engineering, nanotechnology, and super-intelligent robots.

The Museum of the Mind. By John Mack. British Museum Press.
£16.99. The museum of the title is the one in the Bloomsbury district of
London, which this year celebrates its 250th anniversary. The book is as
much an account of what museums represent as a catalogue of a partic-
ular institution’s collections.

London's Leonardo: The Life and Work of Robert Hooke. By Jim
Bennett, Michael Cooper, Michael Hunter and Lisa Jardine. Oxford
University Press. £20. A brilliant experimentalist who died three
hundred years ago in the year that Isaac Newton assumed the
presidency of the Royal Society of London, Hooke is credited with the
invention of the anchor escapement for clocks and of the application of
spiral springs to the balances of watches.

Galileo’s Finger. By Peter Atkins. Pp. 380. Oxford University Press.
£20. These Ten Great Ideas in science could perhaps propel a young
person to pursue a career in science.

Risk and Reason: Safety, Law, and the Environment. By Cass R.
Sunstein. Pp. 352. Cambridge University Press. £25. How to evaluate
the environment as an exercise in cost-benefit analysis.

The Hedgehog, the Fox, and the Magister's Pox. By Stephen Jay
Gould. Jonathan Cape. £18.99. His last book by the master essayist.
Rocks of Ages: Science and Religion in the Fullness of Life. By
Stephen Jay Gould. Ballantine. $12.95 (pbk).

The Music of the Primes. By Marcus du Sautoy. HarperCollins/Fourth
Estate, $24.95/£18.99. Stories of the great mathematicians and their
intellectual legacies by an Oxford professor.

Knowledge and Diplomacy: Science Advice in the United Nations
System. By the Committee for Survey and Analysis of Science on
Sustainable Development to International Organizations, Develop-
ment, Security, and Cooperation. Pp. 120. National Academies Press.
$28. Available free online at: http./www.nap.edu/books/0309084303
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